Воскресенье, 29.12.2024, 00:57
Приветствую Вас, Гость Нашей Планеты

12:30
Живая система «организм человека.
…Жизнь, заведомо укладывающаяся в рамки естественного порядка, предстает перед нами как высшее проявление происходящих в природе процессов самоорганизации.
И. Р. Пригожин

Познакомимся с тем, что представляет собой организм человека (живая система) и насколько он соответствует признакам самоорганизующейся системы.
1. Живой организм обменивается с окружающей средой веществом, энергией и информацией. Более того, он способен ассимилировать полученные извне вещества и перестраивать их в ткани своего тела. Обмен веществ – главный признак живого; он включает в себя питание, дыхание, транспорт веществ, их преобразование и создание из них веществ и структур собственного организма, освобождение энергии в одних процессах и использование в других, выделение конечных продуктов жизнедеятельности. Это все обмен веществ!
В клетках непрерывно идут процессы биологического синтеза, или биосинтеза. С помощью катализаторов химических реакций – ферментов – из простых низкомолекулярных веществ образуются сложные высокомолекулярные соединения. Например, из аминокислот синтезируются белки, из моносахаридов – сложные углеводы, из азотистых оснований – нуклеиновые кислоты. Разнообразные жиры и масла возникают путем химических превращений сравнительно простых веществ, источником которых служит остаток уксусной кислоты – ацетат.
Синтезированные вещества используются в процессе роста для построения клеток и их органоидов и для замены израсходованных или разрушенных молекул. Все реакции биосинтеза идут с поглощением энергии.
2. Живой организм – чрезвычайно сложная система по сравнению с любым неживым объектом. Ему свойственен более высокий уровень асимметрии, высокая степень упорядоченности в пространстве и времени.
3. Живое способно реагировать на внешние раздражители. Ему свойственны активность и движение во взаимодействии с окружающей средой.
4. Живые организмы способны создавать порядок из хаоса уже на молекулярном уровне и тем самым противодействовать росту энтропии. Они извлекают структурированную, полезную для организма отрицательную энтропию (негэнтропию) из окружающей среды, обеспечивая термодинамическую неравновесность своих систем. При этом избыток положительной, неструктурированной энтропии «сбрасывается» обратно в окружающую среду. Живому свойственна энергетическая экономичность и высокая эффективность использования энергии.
5. Живому присуща самоорганизация, постоянное развитие, изменение и усложнение. Система самосовершенствуется и усложняется.
Живая клетка – это способная к самосборке, самореализации и самовоспроизводству изотермическая система органических молекул, извлекающая свободную энергию и сырьевые ресурсы из окружающей среды. В клетке осуществляется множество последовательно протекающих органических реакций, ускоряемых органическими катализаторами (ферментами), которые производит сама клетка. Клетка сама себя поддерживает в динамическом стационарном состоянии, далеком от равновесия с окружающей средой. Она функционирует по принципу максимальной экономии компонентов и процессов.
Если в самоорганизации неживых структур молекулы просты, а механизм реакций сложен, то в живых системах, наоборот, молекулы очень сложны, а механизмы просты.
6. Живые организмы способны размножаться, то есть воспроизводить самих себя. Это самовоспроизводство идет в избыточных количествах, что способствует естественному отбору.
Способность клетки к почти точному самовоспроизведению на протяжении многих поколений обеспечивается самовосстанавливающейся системой линейного кодирования.
7. Наследственность живого определяется генетическим аппаратом, а изменчивость – условиями окружающей среды и реакцией на них организмов. У живых организмов есть прошлое. Наследственная информация, заложенная в генах организма, необходима ему для существования, развития и размножения. Она передается по наследству его потомкам, определяя направление развития организма в окружающей среде. Организм гибко реагирует на изменяющуюся внешнюю среду, откликается новыми свойствами, которые, передаваясь потомкам, обеспечивают эволюцию их развития.
8. Высшим формам живой материи свойствен разум, это позволяет материи изучать, анализировать и познавать самоё себя.
Живое способно ассимилировать полученные извне вещества, то есть перестраивать их, уподобляя собственным материальным структурам, и за счет этого многократно воспроизводить их [1].
Словом, человеческий организм – совершенное творение природы. Это единая, сложная, автоколебательная, саморегулирующаяся, самонастраивающаяся биосистема, состоящая во взаимодействии с окружающей средой.
Жизнь протекает в режиме автоколебаний, которые являются ее свойством, проявляющимся на всех уровнях организации (клеточном, органном и организменном). Выживание обеспечивается взаимодействием организма и среды.
Сложный организм существует и выживает в режиме непрерывной автоматической перестройки множества процессов, перестраивая и регулируя их так, чтобы они обеспечивали эффективное выживание, оптимально соответствовали внутренним и внешним условиям [2].
В чудо-организме заложены программы жизнедеятельности, систем управления (генетическая, нервная, эндокринная) и связь с окружающей средой.
Главной системой, управляющей организмом с помощью электрических сигналов (нервных импульсов), является нервная система, главным центром, регулирующим все процессы – головной и спинной мозг, внешними регуляторами внутренних процессов – условия окружающей среды.
Центральная нервная система управляет всеми процессами. В головном и спинном мозге имеются программы управления функциями, центры синтеза и анализа информации, поступающей по нервным путям от всех внутренних органов и из внешней среды.
Изменение состояния внешней среды воспринимается нервной системой (колебания магнитного поля), жидкими средами организма (колебания гравитации), рецепторами кожи и сетчатки глаз (тепло, холод, свет), преобразующими внешние раздражения в нервные импульсы.
Головной и спинной мозг функционирует в режиме непрерывной автоматической перестройки. Мозг постоянно получает информацию об изменении внутренних и внешних условий, анализирует силу и характер раздражений, осуществляет синтез всех сигналов, формирует ответные реакции и обеспечивает оперативное изменение деятельности различных органов и систем (эндокринной, сердечно-сосудистой, дыхательной, мышечной и др.) и всего организма в целом.
Все процессы имеют ритмическую организацию. Они протекают в режиме автоколебаний, обеспечивающих согласование процессов между собой и с условиями существования. Целостный организм представляет собой единую автоколебательную систему, в которой все процессы закономерно изменяются во времени.
Согласованность колебательных процессов на клеточном, органном и системном (нервная, эндокринная, сердечно-сосудистая, пищеварительная и другие системы) уровнях обеспечивает нормальную работу организма как целого.
И при этом человек – часть общей картины Солнечной системы и подчиняется всем ее законам. И в первую очередь, закону смены дня и ночи и закону смены сезонов, которые напрямую связаны с вращением Земли вокруг своей оси и вокруг Солнца.

Живой мир и ритмы

Эта зависимость хорошо прослеживается на примере растений и животного мира, которые учитывают суточное и сезонное вращение Земли.
Еще в начале XVIII века французский ботаник Анри Луи Дюамель дю Монсо, проводя опыты с гелиотропом, обнаружил удивительную особенность: листья растения к восходу Солнцу поднимались вверх, а к закату опускались. Он установил растение в темной комнате, куда не пробивался солнечный свет, где постоянно были сумерки. И что же? Растение четко выполняло заложенную в нем программу. Как по часам листья вовремя поднимались и вовремя опускались вниз. Подобное явление Дюамель наблюдал и с фасолью. Вывод, который был сделан, таков: растения фиксируют суточное изменение.
Оставалось непонятным, каким образом растения определяли продолжительность светового дня, если смены дня и ночи в темной комнате для них не было.
Это же касается и сезонных изменений, ибо все мы знаем, как вовремя деревья сбрасывают свою листву с наступлением осени.
Хорошим примером учета сезонных изменений являются птицы. Например, зяблик (в переводе это слово означает «холостяк») прилетает к нам ранней весной, когда еще лежит снег. Прилетают только самцы, ибо самкам пока еще нечего делать, да и нечего есть. И этот маленький комочек никогда не ошибется и не прилетит осенью, ибо он «знает», когда весна обязательно придет.
Кстати, по птицам и растениям можно определять и время, правда, с некоторой неточностью. Знакомый нам зяблик начинает свою первую песню с 2-х часов ночи до 2 часов 30 минут, а малиновка – с 3 до 4 часов утра. Шиповник, например, раскрывает свои бутоны с 5 до 6 часов утра, а «укладывается спать» с 20 до 21 часа.
Наблюдение за миром растений и животных позволило сделать принципиально важный вывод: процессы, происходящие в мире растений и животных, – это периодические процессы. Следовательно, есть некие биологические часы, которые регулируются светом и практически не зависят от температуры. Именно по ним мир растений и животных регулирует свою жизнь. Но что они собой представляют и где находятся, оставалось неизвестным. Надо было найти «маятник» в биологических процессах (маятник олицетворяет ход времени в часах), который должен был быть высокочастотным. То есть надо было найти высокочастотный биохимический процесс, реагирующий на свет и не зависящий от температуры.
В XX веке начался интенсивный поиск часового механизма в человеке. И начался он с изучения колебательных химических процессов.

Энергообмен в клетке

В живом организме постоянно расходуется энергия, причем не только во время физической и умственной работы, а даже при полном покое (сне). Процессы роста и поддержания жизни постоянно требуют затрат энергии, которые должны быть как-то возмещены.
Живые организмы поглощают из окружающей среды энергию в такой форме, чтобы ее можно было использовать в конкретных условиях их существования при данных значениях температуры и давления. Процессы превращения веществ, образование новых клеток и систем идут в клетках постоянно [9].
Стоит отметить, что системы преобразования энергии в живых клетках целиком построены из сравнительно хрупких и неустойчивых органических молекул, не способных выдерживать высокие температуры, сильный электрический ток, действие сильных кислот и оснований. Все части живой клетки имеют примерно одну и ту же температуру, в клетках нет сколько-нибудь значительных перепадов давления. Отсюда можно сделать вывод, что клетки не могут использовать тепло как источник энергии, поскольку тепло может совершать работу лишь тогда, когда оно переходит от более нагретого тела к более холодному. Клетки совсем не похожи на тепловые и электрические двигатели – наиболее знакомые нам типы двигателей. Живые клетки представляют собой химические машины, работающие при постоянной температуре.
Постоянная и неразрывная связь живого организма с окружающей средой осуществляется в виде процесса обмена веществ. Обмен веществ включает три этапа: поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.
Метаболизм (от греч . превращение, изменение), собственно сам обмен веществ, – есть совокупность химических реакций, протекающих в организме, обеспечивающих его рост, развитие и процессы жизнедеятельности, взаимодействие с окружающей средой и т. д. Метаболиты – промежуточные продукты обмена веществ в живых клетках. Многие из них оказывают регулирующее влияние на биохимические и физиологические процессы в организме.
Поступление веществ в организм происходит в результате дыхания (кислород) и питания. В ЖКТ продукты питания перевариваются, то есть расщепляются до простых веществ, т. к. организму необходимо использовать во всех процессах свои, присущие только ему жиры, белки и углеводы.
Белки расщепляются ферментами до аминокислот. В клетках из них строятся белки тела. Белки входят в состав клеток, участвуют в процессах свертываемости крови, транспортировке газов, входят в состав костей. Они способны к окислению с выделением энергии, которая в дальнейшем будет использоваться организмом.
Жиры распадаются в организме на глицерин и жирные кислоты. Образуется жир, характерный для организма. Далее он отправляется в депо клетки, там он используется как запасное вещество и строительный материал. Жиры входят в состав мембран клеток, выполняют защитную функцию, сохраняют тепло. Более того, жиры – источник энергии, они способны выделять при окислении больше энергии, чем белки и углеводы.
Углеводы расщепляются в организме до глюкозы и других простых углеводов. Глюкоза – отличный источник энергии [10].
Обмен веществ состоит из двух противоположных, одновременно протекающих процессов: анаболизм и катаболизм. На рисунке 2 представлена общая схема обмена веществ и энергии [11].

Рис. 2. Общая схема обмена веществ и энергии: 1 – пищеварение; 2 – катаболизм; 3 – анаболизм; 4 – распад структурно-функциональных компонентов клеток; 5 – экзергонические реакции; 6, 7 – эндергонические реакции; 8 – выведение из организма

Катаболизм включает реакции, связанные с распадом сложных веществ до более простых, их окислением и выведением из организма продуктов распада. Конечные продукты превращений органических веществ у животных и человека – СО2, Н2О и мочевина.
Процессы катаболизма в клетках сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате этих реакций происходит освобождение энергии, которая необходима организму в процессах жизнедеятельности для осуществления различных видов работы. Реакции катаболизма, сопровождающиеся выделением энергии, называются экзергоническими реакциями.
Интенсивность катаболических процессов и преобладание тех или иных из них в качестве источников энергии в клетках регулируется гормонами.
Анаболизм объединяет все реакции, связанные с синтезом необходимых веществ, их усвоением и использованием для роста, развития и жизнедеятельности организма. То есть объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме. Такие реакции называются эндергоническими.
В результате образуется новый материал для построения клеток и их роста, а также запасается энергия. Примерами анаболизма могут служить следующие процессы: биосинтез белка, сокращение мышц, активный транспорт, продукция тепла. Проще говоря, анаболизм – это создание новых веществ или тканей в организме.
Через реакции анаболизма протекает процесс усвоения питательных веществ, а благодаря реакции катаболизма происходит освобождение организма от веществ, его составляющих. Соотношение катаболических и анаболических процессов в клетке так же регулируется гормонами. Например, адреналин или глюкокортикоиды сдвигают баланс обмена веществ в клетке в сторону преобладания катаболизма, а инсулин, соматотропин, тестостерон – в сторону преобладания анаболизма.

Автоколебания в организме человека

Колебания характеризуются амплитудой и периодом, или обратной ему величиной – частотой колебаний. Амплитуда есть наибольшее отклонение переменной величины от ее среднего значения. Физический смысл частоты – число колебаний в единицу времени. Измеряется частота колебаний в герцах.
Когда период колебаний сохраняется постоянным за все время измерения, такой процесс называется строго периодическим. В апериодическом случае значение периода колебаний не является постоянной величиной. Если имеет место ряд параллельных простых колебательных процессов, суммарное сложное колебание представляет собой суперпозицию всех входящих в него элементарных составляющих сигналов.
Важно отметить, что хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные изменения, связанные с ритмами. Так, даже находясь в гомеостазе, температура тела, кровяное давление, частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.
Физиологические колебательные процессы в живых организмах, уже многие тысячи лет наблюдаемые человечеством, являются собственными биоритмами. Природой собственных биоритмов являются непрерывные чередования фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ, направленные на обеспечение устойчивого неравновесного термодинамического состояния биологических систем.
В теле человека постоянно имеют место периодические и апериодические колебательные процессы различных частот и амплитуд. Их локализация определяется биофизическими свойствами как задающих генераторов (ритмообразователей, пейсмекеров), так и окружающих их тканей.
Следует различать естественные и искусственные пейсмекеры. Естественные пейсмекеры – это совокупность нервных и мышечных клеток, задающих ритм деятельности какой-либо системе или органу. Физиологическая роль естественного пейсмекера состоит в обеспечении автоматизма и регуляции интенсивности работы физиологических систем организма (в том числе и центральной нервной системы) за счет изменения частоты (ритмики) возбуждения. Отличительной особенностью функциональной организации пейсмекера являются способность к самовозбуждению, участию в развитии распространяющегося возбуждения, исходящего из другого пейсмекера.
Искусственные пейсмекеры – это электроимпульсные устройства, позволяющие навязывать искусственный ритм сокращений различным естественным возбудимым образованиям. Разработаны, в частности, электронные стимуляторы деятельности сердца, дыхания, пищеварительной, мочеполовой и других систем [15].
Центральным ритмообразователем традиционно принято считать сердце. В синусовом узле сердца имеется небольшое количество клеток – «истинных водителей ритма» – это пейсмекер сердца. В таких клетках за фазой реполяризации (возврата к состоянию расслабления) следует фаза самостоятельной медленной деполяризации (электрического возбуждения, или активации сердца), приводящая к повышению деполяризирующего электрического тока до порогового уровня и генерации потенциала действия. Собственный источник энергии – энергия метаболизма клеток.
В пейсмекерных клетках формируется потенциал действия длительностью 200–300 миллисекунд с частотой около 1 Гц в норме. Основным механизмом передачи потенциалов действия в живом организме является распространение волн возбуждения. Так, автоколебания, возникающие в пейсмекере, распространяются по нервным волокнам и мышечным структурам сердца. Волны возбуждения могут распространяться по клеткам скелетной мускулатуры, мочевого пузыря, кровеносных сосудов и другим структурам. Распространение колебаний осуществляется также гидромеханическим путем по главным транспортным путям: артериям, венам и лимфатическим сосудам.
Пейсмекер оказывает влияние на ритм сердца, вызывая его флуктуации. По современным представлениям, на ритм сердца оказывают влияние не только дыхательные нейроны, но и активность симпатической нервной системы, другие отделы мозга. Таким образом, именно комплекс пейсмекеров является системообразующим задающим колебательным контуром.
Кроме сердца, ритмообразователем является дыхательная система. При взаимодействии ритмов различных частот наблюдаются суперпозиции, а также модуляции высокочастотных ритмов низкочастотными. Следует заметить, что природа ритмообразования в деятельности сердца и легких различна: пейсмейкер деятельности сердца находится в самом органе, а пейсмейкер дыхания – в стволовой части мозга [16].
Так уж исторически сложилось, что наиболее исследованными оказались гидромеханические процессы, связанные с флуктуацией артериального давления (АД). В условиях его непрерывной регистрации у бодрствующих животных обнаружен сложный характер колебаний.
Еще в 1760 году швейцарский анатом, физиолог и естествоиспытатель А. Галлер обнаружил периодичность в изменении циклов сердечных сокращений. Это явление получило название вариабельности ритма сердца (ВРС). ВРС наблюдается даже в состоянии покоя в положении лежа.
В 1847 году немецкий физиолог Карл Людвиг впервые обнаружил, что изменения АД связаны с дыхательными движениями, и назвал их «волнами кровяного давления».
Двадцать лет спустя немецкий врач Л. Траубе в экспериментах над животными при выключенном дыхании обнаружил существование других самостоятельных ритмов артериального давления с периодом колебаний около 10 секунд. Эти колебания были названы волнами Траубе.
Несколько позже немецкий физиолог Е. Геринг доказал прямую связь дыхательного ритма с колебаниями АД. Эти колебания, синхронные с ритмом дыхания, были названы волнами Геринга.
Но и это еще не все. Немецкий врач С. Майер обнаружил у экспериментальных животных колебания АД с бо́льшим периодом, чем дыхательные (волны Майера).
Все эти волны выявляются при изучении частоты сердечных сокращений (ЧСС). Можно представить, в каких сложных условиях поддерживается в необходимом диапазоне колебаний артериальное давление в организме человека. А добавьте сюда еще реакцию организма на внешние воздействия. Причем реакцию нелинейного характера.
Какой бы внешний раздражитель ни подействовал на организм (то есть на клетку, так как организм состоит из клеток), он это воздействие преобразует в изменение электрического потенциала на мембране. Но само изменение потенциала на мембране клетки определяется тем, какие именно процессы в клетке будут подключены внешним раздражителем. Таким образом, на внешний раздражитель клетка, прежде всего, откликается электрическим «способом».
Словом, клетка переводит информацию о внешнем раздражителе на электрический язык. В нервных окончаниях возбуждаются электрические импульсы. Но они следуют друг за другом не беспорядочно, а в определенной последовательности, чем-то напоминая сообщение с использованием азбуки Морзе. Эти последовательности импульсов представляют собой закодированное определенным образом сообщение. Применяемый клеткой код называют пространственно-временным [17].

Фазная реакция

Фазной реакцией на внешние раздражители обладает не только человеческий организм в целом, но и каждая отдельная мембрана клетки, каждая клетка, отдельная клеточная популяция, отдельное нервное волокно, а также каждый участок кожи.
Реакции организма человека на внешние раздражители по тем последствиям, которые они вызывают в организме, делятся на разные типы.
Организм начинает реагировать только на те внешние сигналы, которые выше порогового значения. Для каждого организма этот порог свой. Но даже один и тот же организм может увеличить этот порог. Так, человеческий организм не реагирует на холодовый раздражитель до определенной температуры. Но если организм закалить, то он может повысить этот порог, то есть начнет чувствовать только более значительное понижение температуры и соответствующим образом реагировать на него.
Регулярное воздействие на организм определенных внешних сигналов соответствующим образом тренирует организм. Реакция организма на такие слабые сигналы называется тренировочной. Она позволяет поднять порог реакции организма, то есть сделать человека более независимым от внешней среды, от изменения условий внешней среды. Она делает организм более способным сопротивляться этим изменениям, короче говоря, увеличивает сопротивляемость организма.
Если раздражающий внешний сигнал усиливается, то есть становится более сильным, то характер реакции организма на него меняется. В данном случае реакция организма (на средний сигнал) строится так, чтобы защитить организм от его действия. Поскольку пренебречь действующим сигналом организм не может, он активизируется, стремясь приспособиться к новым внешним условиям. В частности, организм начинает дрожать. Дрожь – это непроизвольное сокращение скелетных мышц. При охлаждении организма скелетные мышцы непроизвольно сокращаются и тем самым усиливают выделение тепла. Специалисты говорят, что реакция человека в этом случае находится в зоне спокойной активации.
Если сигналы по интенсивности выше средних, то степень активации организма повышается, то есть реакция организма переходит в зону повышенной активации. Человек начинает активно и много двигаться, чтобы выделить в организме много энергии и тем самым согреть организм.
Если же сигнал увеличивается еще больше, то реакция организма принимает форму стресса. Организм не может отреагировать на такой сигнал адекватно. Поэтому он вынужден снять защиту организма, убрать «предохранитель» на входе электрической системы.
Таким образом, при действии сильного сигнала внешней среды защитные системы организма подавляются и в организме в этой ситуации могут произойти поломки, срывы [17].

Частотные биоритмы человека

– Не знаем, как подступиться к биоритмам. С чего бы начать?
Аструс: Разберитесь с аллергией.
– С аллергией? Разве аллергия зависит от биоритмов?
Аструс: Еще как.

Современный человек реагирует на пространственно-волновые и частотные влияния, подстраиваясь или резонируя с ними посредством биоритмов, которые имеют три градации, или уровня: высокой, средней и низкой частоты.
Ритмы высокой частоты – ультрадианные биоритмы, длящиеся до получаса, включая 20-минутный ритм дыхания, поочередно сменяющий дыхание в правой (нагревающей, ян) и левой (охлаждающей, инь) ноздрях.
Ритмы средней частоты – циркадианные биоритмы, длятся от получаса до 6 дней и включают:
1) 4-часовой назальный (носовой) цикл;
2) 3-часовой цикл продуцирования гормона роста;
3) 90-минутную фазу быстрого сна (наиболее активная стадия сна, во время которой в сознании человека возникают яркие и сложные образы, сновидения);
4) двенадцать 2-часовых циклов органов и систем с их наивысшей и низшей активностью;
5) общий суточный (земной) циркадианный (околосуточный) цикл 24 часа.
Ритмы низкой частоты :
1) инфрадианные – недельные;
2) лунные – циркалунные – 28/29 дней;
3) стихийные – 18, 72 и 75 дней;
4) полугодовые, годичные (солнечные);
5) более длительные – индивидуальные нумерологические ритмы души и личности – 3– и 7-летние;
6) астрологические, солнечные – 12 лет (отмечено достоверное влияние на живую материю солнечной активности, периодичность которой составляет 11,1 года) и 36 лет [18].
Живые организмы обеспечивают устойчивость своего неравновесного термодинамического состояния с помощью биоритмов. Отсюда можно считать, что биоритмы являются способом существования всех живых организмов [3].
В живых организмах жизнедеятельность каждой клетки, каждого органа, каждой системы и целостного организма характеризуются соответствующими комплексами биологических ритмов, параметры которых находятся в тесной взаимосвязи и определяются как внутренними свойствами соответствующих элементов организма, так и их ролью в составе того или иного органа или системы, а также средой обитания.
Например, частота сердечных сокращений у человека в спокойном состоянии составляет 58–75 уд./мин., а при большой нагрузке может доходить до 160 и более, циклы биохимических реакций, связанных с перевариванием пищи, происходят, например, от 3 до 5 раз в сутки, в зависимости от режима питания и т. д.
Поскольку каждый живой организм по-своему уникален, для него будет характерен соответствующий только ему оптимальный образ жизни: время сна и бодрствования, режим и состав питания, соответствующая окружающая среда, необходимые физические нагрузки и многое другое.
В связи с этим для такого живого организма будут характерны и соответствующие только ему биологические ритмы физиологических параметров. Однако в реальной жизни такой режим невозможен, так как он не может существовать в отрыве от условий окружающей его обстановки.
Каковы же условия этой обстановки? Во-первых, все живые существа на Земле – от растений до высших млекопитающих – подчиняются суточным ритмам. У человека в зависимости от времени суток циклически меняются физиологическое состояние, интеллектуальные возможности и даже настроение. Ученые доказали, что виной тому – колебания концентраций гормонов в крови.
Период цикла сон-бодрствование составляет 24 часа. Это условие определяется периодом вращения Земли вокруг своей оси.
Вторым основным условием является то, что человек живет в обществе, в связи с чем он должен подчиняться его правилам, в частности режиму дня, времени работы и отдыха, времени приема пищи и т. д. Поэтому в большинстве случаев параметры биоритмов его организма являются принудительными.
Каким же образом в организме человека происходит согласование собственных и принудительных биоритмов? Здесь необходимо обратить внимание на то, что все процессы, происходящие в организме человека в условиях собственного биоритма, являются абсолютно необходимыми для его жизнедеятельности, так как иначе происходит накопление значений невосстанавливающихся функциональных сдвигов, что может привести к потере работоспособности, заболеваниям и гибели. Широко известны случаи потери работоспособности в результате длительного отсутствия сна, сильного физического или умственного переутомления и другие.
Поэтому принудительные периоды биоритмов организации биохимических процессов циклов сна и бодрствования, режима труда и отдыха, режима питания и других циклов корректируются организмом таким образом, чтобы все необходимые для его жизнедеятельности функции укладывались в эти принудительные рамки.
В частности, человек определяет для себя вид трудовой деятельности, время и продолжительность сна, вид отдыха, ассортимент продуктов питания, занятия спортом и многое другое.
Как показывают многочисленные исследования в области хронобиологии и хрономедицины, способность живых организмов, и в частности человека, к коррекции собственных биоритмов очень индивидуальна.

Циркадные ритмы

В последние годы в науке о биоритмах, хронобиологии, было сделано многое, чтобы установить механизм возникновения суточных гормональных циклов. Ученые обнаружили в головном мозге «циркадный центр», а в нем – так называемые «часовые гены» биологических ритмов здоровья [19].
Главное понятие хронобиологии – дневные циклы, длительность которых периодична. Сменяющие друг друга дневные циклы называются циркадными ритмами – от латинских слов circa (около) и dies (дня). Эти ритмы напрямую связаны с циклической сменой освещенности, то есть с вращением Земли вокруг своей оси. Они есть у всех живых существ на Земле: растений, микроорганизмов, беспозвоночных и позвоночных животных, вплоть до высших млекопитающих и человека.
В течение циркадного дня (бодрствования) наша физиология в основном настроена на переработку накопленных питательных веществ, чтобы получить энергию для активной дневной жизни. Наоборот, во время циркадной ночи питательные вещества накапливаются, происходят восстановление и «починка» тканей. Как оказалось, эти изменения в интенсивности обмена веществ регулируются эндокринной системой, то есть гормонами.
Вечером, перед наступлением ночи, в кровь из так называемого верхнего мозгового придатка – эпифиза – выделяется «гормон ночи» мелатонин. Эпифиз, величиной с горошину, задает околосуточный ритм, регулируя выделение мелатонина.
Мелатонин вызывает засыпание, а его колебания в ночное время суток приводят к смене фаз сна. Секреция мелатонина подчиняется циркадной ритмике и зависит от освещенности: темнота ее стимулирует, а свет, наоборот, подавляет.
Мелатонин – удивительное вещество, производится эпифизом только в темное время суток, и время его присутствия в крови прямо пропорционально длительности световой ночи. В ряде случаев бессонница у пожилых людей связана с недостаточностью секреции эпифизом мелатонина. Препараты мелатонина часто используют в качестве снотворных.
Мелатонин вызывает снижение температуры тела, кроме того, он регулирует продолжительность и смену фаз сна. Человеческий сон представляет собой чередование медленноволновой и парадоксальной фаз. Медленноволновой сон характеризуется низкочастотной активностью коры полушарий. Это «сон без задних ног», время, когда мозг отдыхает.
Во время парадоксального сна частота колебаний электрической активности мозга повышается, и мы видим сны. Эта фаза близка к бодрствованию и служит как бы «трамплином» к пробуждению. Медленноволновая и парадоксальная фазы сменяют одна другую 4–5 раз за ночь, в такт изменениям концентрации мелатонина.
Перед пробуждением здоровый организм должен быть готов к активному бодрствованию. В это время кора надпочечников начинает вырабатывать возбуждающие нервную систему гормоны – глюкокортикоиды. Наиболее активный из них – кортизол, который приводит к повышению давления, учащению сердечных сокращений, повышению тонуса сосудов и снижению свертываемости крови. Вот почему клиническая статистика свидетельствует о том, что острые сердечные приступы и внутримозговые геморрагические инсульты в основном приходятся на раннее утро.
Почему некоторые люди встают «ни свет, ни заря», а другие не прочь поспать до полудня? Оказывается, известному феномену «сов и жаворонков» есть вполне научное объяснение.
Дело в том, что минимальная концентрация кортизола в крови обычно приходится на середину ночного сна. У большинства людей уровень кортизола в крови начинает нарастать с полуночи и достигает максимума к 6–8 часам утра. К этому времени практически прекращается выработка мелатонина. Приблизительно через 12 часов концентрация кортизола начинает снижаться, а спустя еще 2 часа запускается синтез мелатонина. Но эти временные рамки весьма условны.
У «жаворонков», например, кортизол достигает максимального уровня раньше – к 4–5 часам утра, у «сов» позже – к 9–11 часам.
Поэтому «жаворонки» более активны в утренние часы, но быстрее утомляются к вечеру. Их обычно рано начинает клонить ко сну, поскольку гормон сна мелатонин поступает в кровь задолго до полуночи.
У «сов» ситуация обратная: они любят поспать утром и проявляют завидную активность вечером.
Указанные временные рамки сугубо индивидуальны и могут варьировать в зависимости от выраженности утреннего («жаворонки») или вечернего («совы») хронотипа.

Суточные ритмы по «биологическим часам»

Раннее утро. В 4–5 часов (по реальному, географическому времени) организм готовится к пробуждению. К 5 часам утра начинает снижаться продукция мелатонина, растет температура тела. К 6 часам нарастает продукция «гормонов активности» – кортизола, адреналина. В крови увеличивается содержание гемоглобина и сахара, учащается пульс, повышается артериальное давление (АД), углубляется дыхание. Увеличивается частота фаз быстрого сна, растет тонус симпатической нервной системы. Все эти явления усиливаются под действием света, тепла и шума.
Утро. С 7 до 9 утра – время подъема, физических упражнений, завтрака. В 9 часов отмечается высокая работоспособность, быстрый счет, хорошая работа кратковременной памяти. Утром на свежую голову хорошо усваивается новая информация. Через 2–3 часа после пробуждения следует поберечь сердце. С 9 до 10 часов – время строить планы, «шевелить мозгами». Не зря говорится «Утро вечера мудренее». В 9–11 часов повышается иммунитет, эффективны лекарства, усиливающие сопротивляемость организма болезням.
День. До 11 часов организм в отличной форме. После 12 часов рекомендуется уменьшать физические нагрузки. Активность головного мозга снижается. Кровь приливает к органам пищеварения. Постепенно начинает снижаться артериальное давление, соответственно, пульс и мышечный тонус, но температура тела растет и дальше.
С 12 до 14 часов – время обеда, а в промежутке между 13 и 15 часами – полуденный и послеобеденный отдых (обеденный перерыв, «тихий час», сиеста).
После 14 часов отмечается минимальная болевая чувствительность, в это время действие обезболивающих препаратов наиболее эффективно и продолжительно.
С 15 часов лучше работает долговременная память, это время вспомнить или хорошо запомнить нужное.
После 16 – повышение работоспособности. В 15–18 часов – самое время заняться спортом. В это время дня рекомендуется обильное и частое питье чистой кипяченой воды – горячей или теплой в зимнее время (для профилактики простудных, желудочно-кишечных заболеваний и болезней почек). Летом можно пить прохладную и минеральную воду.
Между 16 и 19 часами – высокий уровень интеллектуальной активности. Это время также хорошо подходит для домашних дел.
Вечер . Промежуток между 18 и 20 часами – время, подходящее для ужина. Углеводная пища (натуральная – мед и т. п.) способствует выработке особого гормона – серотонина, который благоприятствует хорошему ночному сну.
В это время дня мозг активен, после 19 часов отмечается хорошая реакция, после 20 часов психическое состояние стабилизируется, улучшается память. После 21 часа почти вдвое возрастает количество белых кровяных телец (повышается иммунитет), температура тела понижается, продолжается обновление клеток.
С 20 до 21 – полезна легкая физкультура, пешие прогулки на свежем воздухе. После 21 часа организм готовится к ночному отдыху, 22 часа – время отойти ко сну. Иммунитет усиливается, чтобы охранять организм во время ночного отдыха.
Ночь. В первой половине ночи, когда преобладает медленный сон, выделяется максимальное количество соматотропного гормона, стимулирующего процессы клеточного размножения и роста. Недаром говорят, что во сне мы растем. Происходит регенерация и очищение тканей тела. У бодрствующих в 2 часа ночи может наблюдаться депрессия. В 3–4 часа – самый глубокий сон. Температура тела и уровень кортизола минимальны, содержание мелатонина в крови – максимальное.

Биологические ритмы и биологическое время

– Существуют ритмы собственные и привнесенные. Можно сказать, что собственные биоритмы связаны с принципом работы клеток: чередование фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ. Это чередование и вызывает появление ритма. Так?
Аструс: Очень правильно.
– Биологический ритм делает развитие организма квантованным. В связи с этим вопрос: являются ли биологические ритмы единицами измерения биологического времени?
Аструс: Да.
– Но их же огромное множество.
Аструс: И, тем не менее, являются.
– А не существует ли какая-нибудь единая единица измерения биологического времени?
Аструс: Ученые придут к этому, где обозначат ее и примут за точку отсчета.
– Можно сказать, что основа «биологических часов» – это строгая периодичность протекающих в клетках физико-химических процессов, скорость которых закономерно меняется?
Аструс: Снаружи да, изнутри нет.
– А изнутри как?
Аструс: Изнутри коэффициент поправки.
– В таком случае, нельзя сказать «нет». Изменяется определенным образом.
Аструс: Правильно.
– Существуют ли материальные отпечатки реликтовых биологических ритмов?
Аструс: Существуют.
– А их можно встретить? Как они выглядят хотя бы? В виде чего?
Аструс: В виде пятен кофейного цвета. Причем всегда будет создаваться ощущение, что они вывернуты наружу, но не к вам, сюда, а наружу. Будет создаваться ощущение, что вывернуты наружу в противоположную от вас сторону.
– А где их следует искать?
Аструс: Даже в атмосфере Земли.
– Хотелось бы подробнее узнать, какова роль реликтового излучения в формировании Вселенной, Солнечной системы и планет, человека.
Аструс: Космогонического свойства или же явления галактического свойства. Даже если галактика погибает.
– То есть это комплексное влияние окружающей галактики на данный объект. Через реликтовое излучение. Так?
Аструс: Так.
– А на создание человека тоже такое же комплексное влияние?
Аструс (улыбается): Еще какое. Если бы это влияние учитывалось в гороскопах, то приложение было бы более точным.
– Можно сказать так: «При возникновении живого организм сначала соотносит свои функции со средой, благодаря взаимодействию становится упорядоченным во времени, и со временем становится обладателем временной организацией». Возникают ритмообразователи, водители ритмов. Так?
Аструс: Так.
– Организм приспособился к вращению Земли вокруг Солнца, вокруг собственной оси, появились суточные ритмы, годовые и т. д. Через восприятие света органами зрения происходит изменение ритма двигательной активности, экстрасенсорное восприятие. И, кроме того, действовало внутреннее регулирование (генетическая регуляция). Ритмы закрепились на генетическом уровне и стали передаваться по наследству. Можно так сказать?
Аструс: Можно.
– Не являются ли периоды проживания на Земле такими же привычными ритмами, передающимися по наследству?
Аструс: Являются.
– Мы получаем информацию о необходимости умирания с молоком матери, а врожденный ритм сильнее привычки. Так?
Аструс: Так.
– Если так, то этот ритм неравномерный? Он привнесенный или собственный?
Аструс: Неравномерный, привнесенный и собственный.
– То есть периодичность жизни и смерти неравномерная, но это именно ритм. Вот мы вышли на этот ритм и волей-неволей идем жить и умирать. А нет ли какой-нибудь закономерности? Вот пришел человек, прожил 30 лет, умер. Опять пришел, снова прожил 30 лет и т. д. А другой все время по 80 лет живет. Нет ли такой закономерности?
Аструс: Есть такая закономерность.
– То есть 30 лет здесь, 100 лет там, и снова неравномерность фаз. И у каждого существует свой ритм?
Аструс: У каждого при данном условии. Если внешнее условие изменилось, это меняется.
– А сознание фиксирует все эти обстоятельства внешнего воздействия?
Аструс: Да.
– Так, может быть, пока человек живет на Земле, то этот ритм связан с клетками? А когда человек пожил-умер, пожил-умер, то этот ритм фиксирует именно сознание?
Аструс: Сознание фиксирует и то, и другое. Но прилагается к условиям. К изменяющимся условиям, моделирующим эффекты временной фазы.
– А умирание, как процесс, относится только к физическому телу человека и не относится к сознанию, которое вечно. Так?
Аструс: Вы сами ответили на вопрос. После физиологического умирания процесс продолжается дальше, переходя в физическое умирание, и, наконец, идет выход.


Оцените материал:





ПОДЕЛИСЬ С ДРУЗЬЯМИ:

Материалы публикуемые на "НАШЕЙ ПЛАНЕТЕ" это интернет обзор российских и зарубежных средств массовой информации по теме сайта. Все статьи и видео представлены для ознакомления, анализа и обсуждения. Мнение администрации сайта и Ваше мнение, может частично или полностью не совпадать с мнениями авторов публикаций. Администрация не несет ответственности за достоверность и содержание материалов,которые добавляются пользователями в ленту новостей.


Категория: Непознанное | Источник: http://naturalworld.ru/kniga_idushchie-po-pustine-vremya.htm| Просмотров: 837 | Добавил: dm| | Теги: Живая система «организм человека. | Рейтинг: 5.0/2

В КОММЕНТАРИЯХ НЕДОПУСТИМА КРИТИКА САЙТА,АДМИНИСТРАТОРОВ,МОДЕРАТОРОВ и ПОЛЬЗОВАТЕЛЕЙ,КОТОРЫЕ ГОТОВЯТ ДЛЯ ВАС НОВОСТИ! УВАЖАЙТЕ ЧУЖОЙ ТРУД!
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

По этой теме смотрите:



ВСЕ НОВОСТИ:
Астрология, пророчества [1066]Астрономия и космос [1457]Безумный мир [2063]
Войны и конфликты [2310]Гипотезы и версии [3874]Дом,сад,кулинария [3945]
Животные и растения [2669]Здоровье,психология [4748]История и археология [4652]
Мир вокруг нас [2167]Мировые новости [7583]Наука и технологии [890]
Непознанное [4196]НЛО,уфология [1263]Общество [7795]
Прогнозы ученых,исследования [798]Происшествия,чп,аварии [1302]Российские новости [5860]
Стихия,экология,климат [2739]Феномены и аномалии [945]Фильмы и видео [6336]
Частное мнение [4911]Это интересно! [3311]Юмор,афоризмы,притчи [2394]



АРХИВ САЙТА:
Астрология и пророчества [825]Гипотезы и прогнозы [4629]Дом,сад,кулинария [223]
Животные и растения [2796]Здоровье и красота [5708]Интересности и юмор [3758]
История и археология [4696]Космос, астрономия [2263]Мир вокруг нас [1982]
Наука и технологии [2422]Непознанное [3983]НЛО,уфология [1747]
Общество, в мире, новости [11574]Психология и отношения [84]Стихия, климат, экология [421]
Фильмы и видео [367]Частное мнения [111]Эзотерика и феномены [2031]